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INTRODUCTION

Subtle changes in lake or reservoir trophic status are often difficult to quantify. Most
changes occur over years if not decades and are insidious. Some lakes progress in a linear
fashion toward increasing productivity and some do not. Trying to quantify those changes, when
they occurred and the biological response is extraordinarily difficult. It’s been almost 60 years
since G.W. Hutchinson published the Paradox of the Plankton which postulates that competitive
exclusion amongst algal assemblages seems to be lacking given that they live in a “homogenous”
environment. The answer, of course, is that diversity among algal species is maintained because
they do not live in a homogenous environment. Although the dynamic nature of an aqueous
environment is now generally understood, we still know little about specific environmental
requirements for any given alga to grow and survive. We know even less about interactions
among algal species yet we are often asked to make determinations and predictions about how
they will respond to a given set of environmental circumstances either as they exist now or in the
future. All of these determinations and predictions about algal assemblage changes due to
changing environments need to be scrutinized because we cannot yet quantify the myriad of very
subtle and highly dynamic environmental conditions that undoubtedly are of importance to any
algal assemblage. Environmental models can sometimes make fairly accurate determinations on
a gross scale but often fail at determining the subtle and highly dynamic environments in which
algal assemblages reside.

Controlled conditions in a laboratory setting makes determining specific requirements
needed for a given alga to grow and survive easier to ascertain, however, such studies often lack
environmental significance because exact environmental conditions can never be fully
reproduced in such a controlled setting. Disturbance and chaos is an important environmental
variable that can almost never be reproduced in the laboratory because such events are highly
stochastic. At the other end of the scale, it’s very difficult to determine significance in field-
based studies due to a lack of control and replication. Both approaches have merit and also
significant drawbacks. In situ studies that offer a relatively high degree of environmental
significance but also allowed for some control and replication may enable an enhanced
understanding of algal assemblage ecology over either a strict laboratory- or field-based
approach alone.

The use of mesocosms called “limno-corrals” have been extensively used in several lake
studies to determine assemblage and trophic changes due to a variety of treatments (Pilati &
Wurtsbaugh 2003, Patterson et. al. 1997, Stewart 1999, Levine & Schindler 1999, Klug 2003,
Nydick et. al. 2004, Padisak 1992). Limno-corrals allow some control and replication yet being
in situ very closely mimic ambient lake conditions such as photo-period, temperature, light
intensity, and native aquatic organisms. Limno-corrals are transparent tubes made of various
inert materials (Fig. 1) that extend from above the water’s surface and are fitted over lake
sediment. Thus, they contain a walled-off column of lake water wherein treatments and
manipulations can occur. They are ideal for determining native organism’s response to a variety
of treatments including fertilization, nutrient limitation, trophic structure and energy exchange,
etc.



Figure 1. Limno-corral Sketches
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MATERIALS AND METHODS

Four limno-corrals were deployed at two locations within Watson Lake Arizona on 8/16/11
(Fig. 2). Two limno-corrals were deployed in the lacustrine area near the dam and two in a
transitional area between the dam and in-coming Granite Creek.

Figure 2. Map of Limno-corrals Placed in Watson Lake
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The general experimental design was to collect baseline information, then fertilize with
nitrogen and phosphorous, and then add aluminum sulfate (alum) to make P limiting (two
treatments). We would then observe physico-chemical, chemical, and especially biotic (primarily
phytoplankton) responses to fertilization and nutrient limitation. The basic timeline for each
treatment is given below:

«  8/17/11 — 8/31/11: Baseline
«  8/31/11 — 9/14/11: Fertilization
° 9/28/11 —10/12/11: Alum addition

We used a Hydrolab ® Surveyor 4a datasonde and display to collect water temperature, pH,
dissolved oxygen (% saturation and mg/L), specific conductivity, and oxidation-reduction
potential (ORP), every 1.0 meter throughout the water column in each limno-corral.

Water chemistries and biological samples were collected by lowering tygon tubing to a
specified depth and water was pumped into collection containers using a peristaltic pump.



Generally, samples were collected just beneath the water’s surface, at a mid-point in the water
column, and ~ 1.0 meter above lake sediment. Water chemistries were submitted to Xenco
Laboratories and biological samples were brought back to the University of Arizona
Environmental Research Laboratory (ERL) in Tucson, Arizona. Turbidity levels were
determined in the field (surface, middle, and bottom) using a Hach® turbidity meter. Water
chemistries and biological samples included:

Chemistry

Ammonia
Nitrate+Nitrite

Total Kjeldahl Nitrogen
Ortho-phosphate

Total Phosphorous
Total Alkalinity

Total Dissolved Solids
Total Suspended Solids
Chloride

Fluoride

Sulfate

Biological

Chlorophyll a
Algae Count and Identification (#’s/mL and biovolume)
Zooplankton

Algae counts and identification were performed using a Sedgewick-Rafter counting
chamber on an Olympus BH2 phase-contrast microscope. Counts were natural unit counts and
identified to Genus. Zooplankton were collected with zooplankton nets as a vertical pull from the
bottom to the water’s surface of each limno-corral using two mesh sizes; 80 and 243 um. Algae
and zooplankton samples were preserved with a 2-3% (total concentration) formalin or
glutaraldehyde solution.

Limno-corrals were purchased from Aquatic Research Instruments and consisted of a
polyethylene fabric that was 1.0 meter in diameter (Fig. 3). Light transparency was ~ 85% of
ambient levels. Floats were fabricated (plastic tubes filled with Styrofoam) so that the top of each
limno-corral was above the surface of the water. Weights (concrete blocks) and stainless steel
hoops were used to secure the bottom of each limno-corral over lake sediment. Four additional
anchors (12 gallons of concrete each) were dropped to the bottom of the lake and the top of each
limno-corral was secured to each anchor at equidistant points around the circular opening at the
top. Hoops constructed of PVC were inserted into openings every 10 feet in each limno-corral to
aid in them staying open. Limno-corrals were installed in the lake on 8/16/12. Baseline
measurements were obtained on 8/17/12.



Commercial N and P used in the aquarium trade (Flourish Phosphorous ™ and Flourish
Nitrogen ™) were purchased and added to each mesocosm during the fertilization treatment.
Enough was added to each limno-corral (total volume was depth-dependent) to attempt an
approximate concentration of 5.0 mg/L of total N and 0.75 mg/L of total P.

Granular, un-buffered aluminum sulfate was made into a slurry using lake water and
added to each limno-corral via a peristaltic pump during the P removal (or “alum”) treatment.
Alum dose was calculated using the last total P results from each mesocosm and based upon the
volume of each limno-corral. Alum dosing attempted to re-establish total P levels found during
the baseline measurements.



RESULTS

Nutrients

As a mean of all sites, levels of nitrate+nitrite and TKN were significantly higher during
the fertilization treatment than the alum addition or baseline (Fig. 4). Levels of ammonia were
not significantly lowered with alum and were significantly lower at baseline conditions.

Figure 4. One-way Analysis of Nitrogen Levels by Treatment
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As a mean of all sites, levels of both ortho-phosphate and total P were significantly
greater during the fertilization treatment than the alum or baseline conditions (Fig. 5). Levels of
ortho-phosphate were significantly lower during the alum treatment than either the baseline or
fertilization condition. Levels of total P were almost identical between the alum and baseline

condition.



Figure 5. Levels of Ortho-phosphate and Total P by Treatment
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As the mean sum of all nutrients and all sites by treatment, levels were much greater
during fertilization than the other treatments which were not significantly different (Fig. 6).
Levels of total nutrients were not significantly different between the alum treatment and baseline

condition.

Figure 6. Mean Sum of all Nutrient Levels by Treatment
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There were significantly higher levels of total nutrients at Site A than B (Fig. 7),
however, there was no statistical difference in total nutrient levels between the replicates at either
site. From here on, replicates will be pooled for analyses.

Figure 7. Mean Sum of Total Nutrient Levels for all Depths by Site
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By pooling the replicates at each site, Site A showed significantly higher levels of all
forms of nitrogen than site B (Fig. 8). The greatest difference existed in levels of ammonia.

Figure 8. Nitrogen Levels by Pooled Site
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Limno site A also had significantly higher levels of total P and orthophosphate than did

Limno site B (Fig. 9).

Figure 9. Phosphorous Levels by Pooled Site
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Pooled site A results showed a general increase in ammonia with depth but a decrease in
TKN and nitrate+nitrite (Fig. 10).

Figure 10. Nitrogen Levels by Depth for Limno-A.
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Levels of both orthophosphate and total P showed increases with depth at site A (Fig.

11).

Figure 11. Levels of Orthophosphate and Total P by Depth at Site A
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Figure 12. Levels of Total and Orthophosphate with Depth at Limno-B
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Interestingly, nitrogen levels at site Limno-B showed the opposite trend in nitrogen levels

with depth as did site Limno-A (Fig. 13). Levels of ammonia decreased with depth but levels of

nitrate + nitrite and TKN increased.

Figure 13. Nitrogen Levels with Depth at Site Limno-B
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Physico-chemical

Water within Limno-A showed evidence of thermal stratification during the 8/17/12 and
8/31/12 data but then became more-or-less mixed for the remainder of the samplings (Fig. 14).
Water within Limno-B showed far less thermal stratification than did Limno-A for all time
periods (Fig. 14).

Figure 14. Temperatures Profiles by Depth and Site (Depth in Meters)
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Levels of dissolved oxygen decreased with depth at both sites (Fig. 15). Site Limno-A
showed anoxic conditions after 4-5 m during the 8/17 and 8/31/11 samplings (Fig. 15). Anoxia
occurred at approximately 8 m during the 9/14/11 samplings with more-or-less mixed conditions
upon subsequent samplings at this site. Site Limno-B exhibited anoxia after approximately 3 m
only during the 8/17/11 sampling after which the water appeared to be relatively mixed.

Figure 15. Dissolved Oxygen Levels by Depth and Site (Depth in Meters)
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Levels of pH were generally higher at the surface for all sites (Fig. 16) except immediately
following the alum treatment when levels were lower at the surface than at depth.

Figure 16. pH by Depth and Site (Depth in Meters)
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Secchi disk depth was significantly decreased during the fertilization treatment (Fig. 17). There
was little to no difference in Secchi depth between the alum treatment and baseline condition.

Figure 17. Secchi Depth by Treatment

Oneway Analysis of Secchi By Treatment
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Summary of Fit

Rsquare 0.912321
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Baseline 4 157500 0.08797 1.3894 1.7606
Fertilization 8 070000 0.06221 0.5688 0.8312

Std Error uses a pooled estimate of errorvariance

Levels of turbidity by treatment, as would be expected, were generally the inverse of those for
Secchi disk depth with the fertilization treatment having the greatest levels of turbidity (Fig. 18). There
was no significant difference between the baseline condition and alum treatment.

Figure 18. Turbidity Levels by Treatment
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Means Comparisons
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Biological

Despite significant changes in nutrient levels and water clarity between treatments, there
was no significant difference in chlorophyll a levels by treatment (Fig. 19). Chlorophyll a levels
by date, however, showed that levels were very low immediately following alum treatment; even
lower than the baseline condition (Fig. 20). Highest levels were found during the latter parts of
the fertilization and alum treatments (Fig. 20).

Figure 19. Chlorophyll A Levels by Treatment

Oneway Analysis of Chl A By Treatment
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Figure 20. Chlorophyll A by Depth and Site (Depth in Meters)
Depth & Mean(Depth) vs. Chl A by Site & Date
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The chlorophyll a:pheophytin ratio (a measure of cellular “health” since pheophytin is a
degradation by-product of chlorophyll) indicates that algal cells were more degraded during the baseline

condition and fertilization treatment than during the alum treatment (Fig. 21). By date, it appeared that the

latter part of the alum treatment had the lowest C:P ratio, especially at site Limno-A (Fig. 22).

Figure 21. C:P Ratio by Treatment

Oneway Analysis of CP Ratio By Treatment

1
09 =
208 I 4
5 =
14 )
& 07
06
05 T T
Aum Baseline Fertilization All Pairs
Treatment Tukey-Kramer
0.05
Missing Rows 129
Oneway Anova
Summary of Fit
Rsquare 0.177497
AdjRsquare 0.155853
RootMean Square Error 0.086172
Mean of Response 0.794304
Observations (or Sum Wgts) 79

Analysis of Variance
Sum of

Source DF Squares Mean Square
Treatment 2 012178747 0.060894
Error 76 056434924 0.007426
C. Total 78 068613671

Means for Oneway Anova

FRatio Prob>F
82005 0.0006

Level Number Mean Std Error Lower 95% Upper 95%
Aum 28 0742500 0.01629 0.71007 0.77493
Baseline 18 0.836667  0.02031 0.79621 0.87712
Fertilization 33 0815152  0.01500 078528 0.84503
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Figure 22. C:P Ratio by Depth and Site (Depth in Meters)
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Overall, 10 species of algae were found during this project comprising 5 Divisions (Table 1). In
terms of most prevalent, Chlorophytes dominated the phytoplankton with Chlamydomonas being the most
frequently observed and Spirogyra having the greatest units/mL. The cyanobacter Gloeotrichia was found
only twice but, by a large margin, had the largest biovolume.

Table 1. Algae Results

DIVISION GENUS FREQUENCY Mean UNITS/m* | Mean Biovolume
(In)
Chlorophyta Chlamydomonas 19 715.79 5.95
Chlorophyta Pediastrum 2 300.00 6.91
Chlorophyta Scenedesmus 1 200.00 5.67
Chlorophyta Spirogyra 12 1316.67 7.78
Chlorophyta Staurastrum 5 267.10 6.75
Chlorophyta Tetraselmis 10 540.00 6.13
Chrysophyta Diatoma 25 560.00 5.80
Cyanobacteria Gloeotrichia 2 400.00 9.77
Euglenophyta Euglena 1 200.00 5.86
Pyrrophyta Ceratium 2 200.00 7.21
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Algae counts on a unit/mL basis showed that chlorophytes and chrysophytes dominated the
assemblage during all treatments and conditions (Fig. 23). Although there was no statistical difference
between means for treatments, the highest individual counts were observed during the fertilization
treatment.

Figure 23. Units/mL vs. Division by Treatment
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On a biovolumetric basis, there was no statistical difference between overall means based upon
treatment or condition. On a Divisional basis, cyanobacteria found during the baseline condition had the
highest biovolumetric numbers (Fig. 24).

Figure 24. Ln(Biovolume) vs. Division by Treatment
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On a natural unit per mL basis, the chlorophyte Spirogyra occurred in greatest numbers during
the fertilization treatment (Fig. 25). The flagellated chlorophyte Chlamydomonas and the chrysophyte
Diatoma were frequently observed in almost all treatments and conditions. The only time the
cyanobacteria Gloeotrichia was observed was during the baseline condition.

Figure 25. Units/mL vs. Genus by Treatment and Pooled Sites
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Biovolume, as measured as a percent of the total biovolume for any given sample, revealed that,
when present, Gloeotrichia dominated as the largest species followed closely by the chlorophyte
Spirogyra (Fig. 26). The alum and fertilization treatments were when Spirogyra dominated as the species
comprising the largest biovolume.

Figure 26. Biovolume Percent Total vs. Genus by Treatment and Pooled Sites
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Two net mesh sizes were used for collection of zooplankton, 80 and 243 um. For the 80 um mesh
size, copepod nauplii were found in the highest numbers during the baseline condition followed by the
baseline condition (Fig. 27). None were found during the fertilization treatment. Adult calonoid copepods
were found more often at site Limno-A and cladocerans (likely of the Genus Daphnia) were more
commonly found at site Limno-B.

Figure 27. Number M?vs. Order by Treatment and Pooled Sites
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The only time nauplii were found in the 243 um mesh size was during the alum treatment at site
Limno-A (Fig. 28). Interestingly, calanoid copepods now dominated the zooplankton assemblage at
Limno-B as compared to the 80 um mesh size when these were largely absent. Also interesting is that the
alum and fertilization treatments appeared to have more total zooplankters than did the baseline condition
at Limno-A.

Figure 28. Number M? vs. Order by Treatment and Pooled Sites
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Relationships

We used principal components analysis to examine the relationships between and among
many variables in the high dimensional data set. Of primary importance was what variables were
the most important in causing primary production in the limno-corrals. Because there are
different measures of primary production (including standing crop), and because the correlations
between these different measures are nebulous, we will analyze algal nutrients against measures
of chlorophyll a, counts (units/mL), and biovolume.

Measures of chlorophyll a had one of the more nebulous relationships to algal nutrients
(Fig. 29). Chlorophyll a was most closely correlated to measures of organic and oxidized forms
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of nitrogen and seemingly an inverse correlation to reduced forms of nitrogen (Fig. 29). Care
should be taken about auto-correlation between species of nitrogen as reduced forms are often
found within a stratified hypolimnion outside of the photic range of most types of algae. The
correlation between chlorophyll a and either TKN or total N are very similar. Therefore, it is
likely safe to assume that there is at least some correlation between chlorophyll a and at least
total nitrogen.

Figure 29. Principal Components Analysis of Chlorophyll a and Algal Nutrients.
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Algae count data (in units/mL) showed a similar relationship to algal nutrients as
chlorophyll a (Fig. 30). There was a positive relationship to all forms of nitrogen with the
exception of ammonia.
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Figure 30. Principal Components Analysis of Units/mL and Algal Nutrients.
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Interestingly, measures of biovolume showed an inverse relationship to virtually all algal
nutrients (Fig. 31). This actually makes sense due to the cyanobacter Gloeotrichia dominating
the algal assemblage biovolumetrically during the baseline condition. The divisional shift away
from cyanobacteria to, for the most part, smaller-bodied chlorophytes during the fertilization
treatment is likely the main reason for the inverse relationship between biovolume measurements

and algal nutrients.
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Figure 31. Principal Components Analysis of Biovolume and Algal Nutrients.
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DISCUSSION

The close reproducibility between replicates, response to algal nutrient levels following
treatment(s), and similarity to lake conditions during baseline conditions were all very successful
components of this experiment. Less successful was the algal response to fertilization and alum
treatments. This is likely due to several factors. Algal assemblages are highly dynamic and
temporal variability is very difficult to capture in field or even laboratory studies. This project
was started late in the growing season for a lake at the elevation of Watson and time given for
the algal response to each treatment likely far too short. Also, the limno-corrals have a light
transparency of ~ 85% ambient light. The amount of periphytic biomass growing on the inside of
the limno-corrals was not expected and was not accounted for in this experiment. This likely
resulted in under-estimating the amount of algal biomass inside the limno-corrals and affected
the results; especially during the fertilization treatment. Had this biomass been accounted for, it’s
possible the measures of algal biomass would have been more significant between treatments
and baseline condition.

The cyanobacter Gloeotrichia is difficult to sample representatively. It was observed in
Watson as macroscopic balls suspended at varying depths throughout the water column. It was
also observed in situ in each limno-corral during the baseline condition. In fact each spherical
colony or “ball” contains many pseudo-filaments adjoined together (Picture X). Gloeotrichia is
usually found to contain heterocysts for nitrogen fixation. Each spherical colony is joined
together at the heterocystous end of each pseudo-filament. Each colony is very large and on a
biovolumetric basis, is often dominate in the water column. Within the lake it appeared as if
Gloeotrichia was the dominant phytoplankter with little growing in the space between each
colony. Despite this, it was found in relatively low levels in grab or composite samples collected
from the lake (personal observation). This is likely due to a failure to adequately and
representatively capture such large phytoplankton using the gear selected.

The presence and apparent dominance of Gloeotrichia both in the lake and limno-corrals
during the baseline condition is telling. As previously mentioned, this is a highly heterocystous
species capable of fixing atmospheric nitrogen. Given the total biovolume observed in situ within
the lake, but not necessarily reflected in collected samples, we could assume there is a relatively
large degree of nitrogen fixation occurring within the lake. The presence or absence, or
speciation, of nitrogen within the lake and the presence of an abundance of species capable of N,
fixation leads to the potential for a few scenarios. Before N, can be incorporated into biological
molecules, it must be converted to NH3. The biological reduction of N, is catalyzed by a
multimeric enzyme complex, nitrogenase. This enzyme is irreversibly inhibited by molecular
oxygen. The specialized heterocystous cells where nitrogen fixation occurs, walls off oxygen
NHj3 from surrounding cells. The presence of such a highly heterocystous species such as
Gloeotrichia indicates the possibility of nitrogen limitation in the surrounding water, giving it a
decisive advantage over other phytoplanktonic species.

Upon the introduction of nitrogen and phosphorous during the fertilization treatment, the
advantage Gloeotrichia had over other species was removed. This resulted in smaller-bodied
algal cells such as flagellated chlorophytes becoming dominant. This new assemblage requires
not only light but also oxidized forms of nitrogen such as NO3 and to a much smaller degree,
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NO,. The new nutrient ratios and levels favored an abrupt and total assemblage shift in a
relatively very small period of time. This assemblage shift not only occurred in the
phytoplankton, but also in the amount of periphytic biomass which was readily observed
growing inside the limno-corrals. This sudden growth (primarily of filamentous Spirogyra) and
overall biomass of periphyton was un-expected given the relatively short duration of the
experiment. Unfortunately, this periphytic biomass would have been difficult to accurately
quantify and was not. However, personal observation revealed that it was largely absent almost
immediately following alum treatments likely due to nutrient limitation of P. Had this periphytic
biomass been quantified, results of chlorophyll a and algal counts likely would have been more
significant.

Ammonification occurred in the hypolimnia of Watson. Certainly some of this
ammonification occurred from organic matter produced in the photic zone raining down to
bottom, anoxic waters. Some of it, however, likely comes from reduction within lake sediments
and the release of ammonia from them. Due to the inter-conversion of nitrogen species (oxidized,
organic, or oxidized), the overall nitrogen pool within Watson seems to favor species capable of
nitrogen fixation. The hypolimnion may essentially “lock up” nitrogen in the form of ammonia
as Summer progresses and surface waters deposit organic nitrogen to bottom waters. There may
be more algal diversity in the photic zone earlier in Summer or Spring. It would be interesting to
try an aeration-type experiment within the limno-corrals to determine if aeration could play a
significant role in reducing nutrient (N and P) within the lake.

There was no significant difference in overall zooplankton levels between the baseline
and alum treatments. Herbivorous zooplankters always lag behind any increase or decrease in
phytoplankton numbers and biomass. Zooplankton did seem to increase during the fertilization
treatment, however, these results might have been even more significant had time allowed us to
follow trends in zooplankton numbers over time. There appeared to be little or no toxicity
concerns following alum treatment.

The effects of alum on the baseline condition are unknown. It also would have been
interesting to see if P-limitation would have resulted in another algal assemblage or reduction in
biomass as compared to what was already in the lake. Time and budgetary constraints kept us
from performing such an analysis in this experiment. In any future limno-corral experiment, the
effect(s) of treatments on the baseline condition should be established.

The effect of fertilization on the baseline treatment resulted in a changed algal
assemblage. This new assemblage did not favor species capable of N, fixation. Algal biomass
within the limno-corrals likely changed more than was noticed had periphyton been quantified.
What is clear is that algal assemblages react quickly to nutrient addition...and nutrient removal.
The dynamics of this could be observed in this study and were successful in regards to nutrient
addition and removal. The effects this had on the algal assemblage leads insight into what might
occur in Watson under the scenarios of either increasing or decreasing nutrient concentrations.
For any subsequent use of limno-corrals, more time is needed to capture temporal variability and
periphyton needs to be quantified.
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PICTURE 1. Gloecystis sp. found within Watson Lake limno-corrals 100 X
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PICTURE 2. Spirogyra sp. found within Watson Lake limno-corrals. 150 X

PICTURE 3. Chlamydomonas sp. found within Watson Lake limno-corrals. 200 X
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PICTURE 4. Limno-corrals loaded on pontoon boat for deployment.

PICTURE 5. Limno-corrals deployed within Watson Lake.
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PICTURE 6. Outside of limno-corrals.

PICTURE 7. Collecting zooplankton from limno-corrals.
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